Genetic ablation of the CDP/Cux protein C terminus results in hair cycle defects and reduced male fertility.

نویسندگان

  • Mai X Luong
  • Caroline M van der Meijden
  • DongXia Xing
  • Ruth Hesselton
  • Edwin S Monuki
  • Stephen N Jones
  • Jane B Lian
  • Janet L Stein
  • Gary S Stein
  • Ellis J Neufeld
  • Andre J van Wijnen
چکیده

Murine CDP/Cux, a homologue of the Drosophila Cut homeoprotein, modulates the promoter activity of cell cycle-related and cell-type-specific genes. CDP/Cux interacts with histone gene promoters as the DNA binding subunit of a large nuclear complex (HiNF-D). CDP/Cux is a ubiquitous protein containing four conserved DNA binding domains: three Cut repeats and a homeodomain. In this study, we analyzed genetically targeted mice (Cutl1(tm2Ejn), referred to as Delta C) that express a mutant CDP/Cux protein with a deletion of the C terminus, including the homeodomain. In comparison to the wild-type protein, indirect immunofluorescence showed that the mutant protein exhibited significantly reduced nuclear localization. Consistent with these data, DNA binding activity of HiNF-D was lost in nuclear extracts derived from mouse embryonic fibroblasts (MEFs) or adult tissues of homozygous mutant (Delta C(-/-)) mice, indicating the functional loss of CDP/Cux protein in the nucleus. No significant difference in growth characteristics or total histone H4 mRNA levels was observed between wild-type and Delta C(-/-) MEFs in culture. However, specific histone genes (H4.1 and H1) containing CDP/Cux binding sites have reduced expression levels in homozygous mutant MEFs. Stringent control of growth and differentiation appears to be compromised in vivo. Homozygous mutant mice have stunted growth (20 to 50% weight reduction), a high postnatal death rate of 60 to 70%, sparse abnormal coat hair, and severely reduced fertility. The deregulated hair cycle and severely diminished fertility in Cutl1(tm2Ejn/tm2Ejn) mice suggest that CDP/Cux is required for the developmental control of dermal and reproductive functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of CDP/Cux, a transcription factor, to cell cycle progression.

CCAAT-displacement protein/Cut homeobox (CDP/Cux) was initially identified as a transcriptional repressor. However, a number of studies have now suggested that CDP/Cux is a transcriptional activator as well. Stable DNA binding activity of CDP/Cux is up-regulated at the G(1)/S transition by two mechanisms, dephosphorylation by the Cdc25A phosphatase and proteolytic processing to generate a 110 k...

متن کامل

The p110 isoform of the CDP/Cux transcription factor accelerates entry into S phase.

The CDP/Cux transcription factor was previously found to acquire distinct DNA binding and transcriptional properties following a proteolytic processing event that takes place at the G1/S transition of the cell cycle. In the present study, we have investigated the role of the CDP/Cux processed isoform, p110, in cell cycle progression. Populations of cells stably expressing p110 CDP/Cux displayed...

متن کامل

Development of an in vitro assay for the proteolytic processing of the CDP/Cux transcription factor.

The CDP/Cux transcription factor was previously shown to be proteolytically processed at the G1/S transition. In view of characterizing and eventually identifying the protease responsible for CDP/Cux processing, we have established an in vitro proteolytic processing assay. CDP/Cux recombinant proteins expressed in mammalian or bacterial cells were efficiently processed in vitro using as a sourc...

متن کامل

A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor.

The subclass of cysteine proteases termed lysosomal cathepsins has long been thought to be primarily involved in end-stage protein breakdown within lysosomal compartments. Furthermore, few specific protein substrates for these proteases have been identified. We show here that cathepsin L functions in the regulation of cell cycle progression through proteolytic processing of the CDP/Cux transcri...

متن کامل

Lymphoid apoptosis and myeloid hyperplasia in CCAAT displacement protein mutant mice.

CCAAT displacement protein (cux/CDP) is an atypical homeodomain protein that represses expression of several developmentally regulated lymphoid and myeloid genes in vitro, including gp91-phox, immunoglobulin heavy chain, the T-cell receptor beta and gamma chains, and CD8. To determine how this activity affects cell development in vivo, a hypomorphic allele of cux/CDP was created by gene targeti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2002